Source code for gseapy.plot

# -*- coding: utf-8 -*-
import operator
import sys
import warnings
from typing import Iterable, List, Optional, Tuple, Union

import matplotlib.pyplot as plt
import matplotlib.transforms as transforms
import numpy as np
import pandas as pd
import scipy.cluster.hierarchy as sch
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.category import UnitData
from matplotlib.colors import Normalize
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from matplotlib.ticker import MaxNLocator

from gseapy.scipalette import SciPalette


[docs]class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, vcenter=None, clip=False): self.vcenter = vcenter Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... # Note also that we must extrapolate beyond vmin/vmax x, y = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y, left=-np.inf, right=np.inf)) def inverse(self, value): y, x = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1] return np.interp(value, x, y, left=-np.inf, right=np.inf)
[docs]def zscore(data2d: pd.DataFrame, axis: Optional[int] = 0): """Standardize the mean and variance of the data axis Parameters. :param data2d: DataFrame to normalize. :param axis: int, Which axis to normalize across. If 0, normalize across rows, if 1, normalize across columns. If None, don't change data :Returns: Normalized DataFrame. Normalized data with a mean of 0 and variance of 1 across the specified axis. """ if axis is None: # normalized to mean and std using entire matrix # z_scored = (data2d - data2d.values.mean()) / data2d.values.std(ddof=1) return data2d assert axis in [0, 1] z_scored = data2d.apply( lambda x: (x - x.mean()) / x.std(ddof=1), axis=operator.xor(1, axis) ) return z_scored
class Heatmap(object): def __init__( self, df: pd.DataFrame, z_score: Optional[int] = None, title: Optional[str] = None, figsize: Tuple[float, float] = (5, 5), cmap: Optional[str] = None, xticklabels: bool = True, yticklabels: bool = True, ofname: Optional[str] = None, **kwargs, ): self.title = "" if title is None else title self.figsize = figsize self.xticklabels = xticklabels self.yticklabels = yticklabels self.ofname = ofname # scale dataframe df = df.astype(float) df = zscore(df, axis=z_score) df = df.iloc[::-1] self.data = df self.cbar_title = "Norm.Exp" if z_score is None else "Z-Score" self.cmap = cmap if cmap is None: self.cmap = SciPalette.create_colormap() # navyblue2darkred self._zscore = z_score def _skip_ticks(self, labels, tickevery): """Return ticks and labels at evenly spaced intervals.""" n = len(labels) if tickevery == 0: ticks, labels = [], [] elif tickevery == 1: ticks, labels = np.arange(n) + 0.5, labels else: start, end, step = 0, n, tickevery ticks = np.arange(start, end, step) + 0.5 labels = labels[start:end:step] return ticks, labels def _auto_ticks(self, ax, labels, axis): transform = ax.figure.dpi_scale_trans.inverted() bbox = ax.get_window_extent().transformed(transform) size = [bbox.width, bbox.height][axis] axis = [ax.xaxis, ax.yaxis][axis] (tick,) = ax.xaxis.set_ticks([0]) fontsize = tick.label1.get_size() max_ticks = int(size // (fontsize / 72)) if max_ticks < 1: tickevery = 1 else: tickevery = len(labels) // max_ticks + 1 return tickevery def get_ax(self): if hasattr(sys, "ps1") and (self.ofname is None): fig = plt.figure(figsize=self.figsize) else: fig = Figure(figsize=self.figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) self.fig = fig return ax def draw(self): df = self.data ax = self.get_ax() vmin = np.percentile(df, 2) vmax = np.percentile(df, 98) if self._zscore is None: norm = Normalize(vmin=vmin, vmax=vmax) cbar_locator = MaxNLocator(nbins=5, integer=True) else: norm = MidpointNormalize(vmin=vmin, vmax=vmax, vcenter=0) cbar_locator = MaxNLocator(nbins=3, symmetric=True) # symmetric=True matrix = ax.pcolormesh( df.values, cmap=self.cmap, norm=norm, rasterized=True, ) xstep = self._auto_ticks(ax, df.columns.values, 0) ystep = self._auto_ticks(ax, df.index.values, 1) xticks, xlabels = self._skip_ticks(df.columns.values, tickevery=xstep) yticks, ylabels = self._skip_ticks(df.index.values, tickevery=ystep) ax.set_ylim([0, len(df)]) ax.set(xticks=xticks, yticks=yticks) ax.set_xticklabels( xlabels if self.xticklabels else "", fontsize=14, rotation=90 ) ax.set_yticklabels(ylabels if self.yticklabels else "", fontsize=14) ax.set_title(self.title, fontsize=20, fontweight="bold") ax.tick_params( axis="both", which="both", bottom=False, top=False, right=False, left=False ) # cax=fig.add_axes([0.93,0.25,0.05,0.20]) cbar = self.fig.colorbar(matrix, shrink=0.3, aspect=10) # ticks=[-1, 0, 1] cbar.ax.yaxis.set_tick_params( color="white", direction="in", left=True, right=True ) # Add colorbar, make sure to specify tick locations to match desired ticklabels cbar.locator = cbar_locator # LinearLocator(3) cbar.update_ticks() cbar.ax.set_title(self.cbar_title, loc="left", fontweight="bold") for key, spine in cbar.ax.spines.items(): spine.set_visible(False) # cbar = colorbar(matrix) for side in ["top", "right", "left", "bottom"]: ax.spines[side].set_visible(False) # cbar.ax.spines[side].set_visible(False) return ax
[docs]def heatmap( df: pd.DataFrame, z_score: Optional[int] = None, title: str = "", figsize: Tuple[float, float] = (5, 5), cmap: Optional[str] = None, xticklabels: bool = True, yticklabels: bool = True, ofname: Optional[str] = None, **kwargs, ): """Visualize the dataframe. :param df: DataFrame from expression table. :param z_score: 0, 1, or None. z_score axis{0, 1}. If None, not scale. :param title: figure title. :param figsize: heatmap figsize. :param cmap: matplotlib colormap. e.g. "RdBu_r". :param xticklabels: bool, whether to show xticklabels. :param xticklabels: bool, whether to show xticklabels. :param ofname: output file name. If None, don't save figure """ ht = Heatmap(df, z_score, title, figsize, cmap, xticklabels, yticklabels, ofname) ax = ht.draw() if ofname is None: return ax # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) ht.fig.savefig(ofname, bbox_inches="tight", dpi=300)
class GSEAPlot(object): def __init__( self, rank_metric: Iterable[float], term: str, hits: Iterable[int], nes: float, pval: float, fdr: float, RES: Iterable[float], pheno_pos: str = "", pheno_neg: str = "", figsize: Tuple[float, float] = (6, 5.5), cmap: str = "seismic", ofname: Optional[str] = None, **kwargs, ): # dataFrame of ranked matrix scores self._x = np.arange(len(rank_metric)) self.rankings = np.asarray(rank_metric) self.RES = np.asarray(RES) self.figsize = figsize self.term = term self.cmap = cmap self.ofname = ofname self._pos_label = pheno_pos self._neg_label = pheno_neg self._zero_score_ind = np.abs(self.rankings).argmin() self._z_score_label = "Zero score at " + str(self._zero_score_ind) self._hit_indices = hits self.module = "tmp" if ofname is None else ofname.split(".")[-2] if self.module == "ssgsea": self._nes_label = "ES: " + "{:.3f}".format(float(nes)) self._pval_label = "Pval: invliad for ssgsea" self._fdr_label = "FDR: invalid for ssgsea" else: self._nes_label = "NES: " + "{:.3f}".format(float(nes)) self._pval_label = "Pval: " + "{:.3e}".format(float(pval)) self._fdr_label = "FDR: " + "{:.3e}".format(float(fdr)) # output truetype plt.rcParams.update({"pdf.fonttype": 42, "ps.fonttype": 42}) # in most case, we will have many plots, so do not display plots # It's also usefull to run this script on command line. # GSEA Plots if hasattr(sys, "ps1") and (self.ofname is None): # working inside python console, show figure self.fig = plt.figure(figsize=self.figsize) else: # If working on command line, don't show figure self.fig = Figure(figsize=self.figsize) self._canvas = FigureCanvas(self.fig) self.fig.suptitle(self.term, fontsize=16, wrap=True, fontweight="bold") def axes_rank(self, rect): """ rect : sequence of float The dimensions [left, bottom, width, height] of the new axes. All quantities are in fractions of figure width and height. """ # Ranked Metric Scores Plot ax1 = self.fig.add_axes(rect, sharex=self.ax) if self.module == "ssgsea": ax1.fill_between(self._x, y1=np.log(self.rankings), y2=0, color="#C9D3DB") ax1.set_ylabel("log ranked metric", fontsize=16, fontweight="bold") else: ax1.fill_between(self._x, y1=self.rankings, y2=0, color="#C9D3DB") ax1.set_ylabel("Ranked list metric", fontsize=16, fontweight="bold") ax1.text( 0.05, 0.9, self._pos_label, color="red", horizontalalignment="left", verticalalignment="top", transform=ax1.transAxes, ) ax1.text( 0.95, 0.05, self._neg_label, color="Blue", horizontalalignment="right", verticalalignment="bottom", transform=ax1.transAxes, ) # the x coords of this transformation are data, and the y coord are axes trans1 = transforms.blended_transform_factory(ax1.transData, ax1.transAxes) ax1.vlines( self._zero_score_ind, 0, 1, linewidth=0.5, transform=trans1, linestyles="--", color="grey", ) hap = self._zero_score_ind / max(self._x) if hap < 0.25: ha = "left" elif hap > 0.75: ha = "right" else: ha = "center" ax1.text( hap, 0.5, self._z_score_label, horizontalalignment=ha, verticalalignment="center", transform=ax1.transAxes, fontsize=14, ) ax1.set_xlabel("Rank in Ordered Dataset", fontsize=16, fontweight="bold") ax1.spines["top"].set_visible(False) ax1.tick_params( axis="both", which="both", top=False, right=False, left=False, labelsize=14 ) ax1.locator_params(axis="y", nbins=5) ax1.yaxis.set_major_formatter( plt.FuncFormatter(lambda tick_loc, tick_num: "{:.1f}".format(tick_loc)) ) def axes_hits(self, rect): """ rect : sequence of float The dimensions [left, bottom, width, height] of the new axes. All quantities are in fractions of figure width and height. """ # gene hits ax2 = self.fig.add_axes(rect, sharex=self.ax) # the x coords of this transformation are data, and the y coord are axes trans2 = transforms.blended_transform_factory(ax2.transData, ax2.transAxes) ax2.vlines(self._hit_indices, 0, 1, linewidth=0.5, transform=trans2) ax2.spines["bottom"].set_visible(False) ax2.tick_params( axis="both", which="both", bottom=False, top=False, right=False, left=False, labelbottom=False, labelleft=False, ) def axes_cmap(self, rect): """ rect : sequence of float The dimensions [left, bottom, width, height] of the new axes. All quantities are in fractions of figure width and height. """ # center color map at midpoint = 0 vmin = np.percentile(self.rankings.min(), 2) vmax = np.percentile(self.rankings.max(), 98) midnorm = MidpointNormalize(vmin=vmin, vcenter=0, vmax=vmax) # colormap ax3 = self.fig.add_axes(rect, sharex=self.ax) ax3.pcolormesh( self.rankings[np.newaxis, :], rasterized=True, norm=midnorm, cmap=self.cmap, ) # cm.coolwarm ax3.spines["bottom"].set_visible(False) ax3.tick_params( axis="both", which="both", bottom=False, top=False, right=False, left=False, labelbottom=False, labelleft=False, ) def axes_stat(self, rect): """ rect : sequence of float The dimensions [left, bottom, width, height] of the new axes. All quantities are in fractions of figure width and height. """ # Enrichment score plot ax4 = self.fig.add_axes(rect) ax4.plot(self._x, self.RES, linewidth=4, color="#88C544") ax4.text(0.1, 0.1, self._fdr_label, transform=ax4.transAxes, fontsize=14) ax4.text(0.1, 0.2, self._pval_label, transform=ax4.transAxes, fontsize=14) ax4.text(0.1, 0.3, self._nes_label, transform=ax4.transAxes, fontsize=14) # the y coords of this transformation are data, and the x coord are axes trans4 = transforms.blended_transform_factory(ax4.transAxes, ax4.transData) ax4.hlines(0, 0, 1, linewidth=1, transform=trans4, color="grey") ax4.set_ylabel("Enrichment Score", fontsize=16, fontweight="bold") # ax4.set_xlim(min(self._x), max(self._x)) ax4.tick_params( axis="both", which="both", bottom=False, top=False, right=False, labelbottom=False, labelsize=14, ) ax4.locator_params(axis="y", nbins=5) # FuncFormatter need two argument, I don't know why. this lambda function used to format yaxis tick labels. ax4.yaxis.set_major_formatter( plt.FuncFormatter(lambda tick_loc, tick_num: "{:.1f}".format(tick_loc)) ) self.ax = ax4 def add_axes(self): """ Please check matplotlib docs about how to `add_axes` to figure. Here is a more flexible way to create a new gseaplot. For example, don't show ranking and merge hits and colormap together just used: self.axes_stat([0.1,0.2,0.8,0.8]) # axes_stat should be called first self.axes_cmap([0.1,0.1,0.8,0.1]) self.axes_hits([0.1,0.1,0.8,0.1]) """ self.axes_stat([0.1, 0.5, 0.8, 0.4]) self.axes_hits([0.1, 0.45, 0.8, 0.05]) self.axes_cmap([0.1, 0.40, 0.8, 0.05]) self.axes_rank([0.1, 0.1, 0.8, 0.3]) # self.fig.subplots_adjust(hspace=0) # self.fig.tight_layout() def savefig(self, bbox_inches="tight", dpi=300): # if self.ofname is not None: if hasattr(sys, "ps1") and (self.ofname is not None): self.fig.savefig(self.ofname, bbox_inches=bbox_inches, dpi=dpi) elif self.ofname is None: return else: self._canvas.print_figure(self.ofname, bbox_inches=bbox_inches, dpi=300) return
[docs]def gseaplot( rank_metric: Iterable[float], term: str, hits: Iterable[int], nes: float, pval: float, fdr: float, RES: Iterable[float], pheno_pos: str = "", pheno_neg: str = "", figsize: Tuple[float, float] = (6, 5.5), cmap: str = "seismic", ofname: Optional[str] = None, **kwargs, ): """This is the main function for reproducing the gsea plot. :param rank_metric: pd.Series for rankings, rank_metric.values. :param term: gene_set name :param hits: hits indices of rank_metric.index presented in gene set S. :param nes: Normalized enrichment scores. :param pval: nominal p-value. :param fdr: false discovery rate. :param RES: running enrichment scores. :param pheno_pos: phenotype label, positive correlated. :param pheno_neg: phenotype label, negative correlated. :param figsize: matplotlib figsize. :param ofname: output file name. If None, don't save figure """ g = GSEAPlot( rank_metric, term, hits, nes, pval, fdr, RES, pheno_pos, pheno_neg, figsize, cmap, ofname, ) g.add_axes() g.savefig()
class DotPlot(object): def __init__( self, df: pd.DataFrame, x: Optional[str] = None, y: str = "Term", hue: str = "Adjusted P-value", dot_scale: float = 5.0, x_order: Optional[List[str]] = None, y_order: Optional[List[str]] = None, thresh: float = 0.05, n_terms: int = 10, title: str = "", figsize: Tuple[float, float] = (6, 5.5), cmap: str = "viridis_r", ofname: Optional[str] = None, **kwargs, ): """Visualize GSEApy Results with categorical scatterplot When multiple datasets exist in the input dataframe, the `x` argument is your friend. :param df: GSEApy DataFrame results. :param x: Categorical variable in `df` that map the x-axis data. Default: None. :param y: Categorical variable in `df` that map the y-axis data. Default: Term. :param hue: Grouping variable that will produce points with different colors. Can be either categorical or numeric :param x_order: bool, array-like list. Default: False. If True, peformed hierarchical_clustering on X-axis. or input a array-like list of `x` categorical levels. :param x_order: bool, array-like list. Default: False. If True, peformed hierarchical_clustering on Y-axis. or input a array-like list of `y` categorical levels. :param title: Figure title. :param thresh: Terms with `column` value < cut-off are shown. Work only for ("Adjusted P-value", "P-value", "NOM p-val", "FDR q-val") :param n_terms: Number of enriched terms to show. :param dot_scale: float, scale the dot size to get proper visualization. :param figsize: tuple, matplotlib figure size. :param cmap: Matplotlib colormap for mapping the `column` semantic. :param ofname: Output file name. If None, don't save figure :param marker: The matplotlib.markers. See https://matplotlib.org/stable/api/markers_api.html """ self.marker = "o" if "marker" in kwargs: self.marker = kwargs["marker"] self.y = y self.x = x self.x_order = x_order self.y_order = y_order self.hue = str(hue) self.colname = str(hue) self.figsize = figsize self.cmap = cmap self.ofname = ofname self.scale = dot_scale self.title = title self.n_terms = n_terms self.thresh = thresh self.data = self.process(df) plt.rcParams.update({"pdf.fonttype": 42, "ps.fonttype": 42}) def isfloat(self, x): try: float(x) except: return False else: return True def process(self, df: pd.DataFrame): # check if any values in `df[colname]` can't be coerced to floats can_be_coerced = df[self.colname].map(self.isfloat).sum() if can_be_coerced < len(df): msg = "some value in %s could not be typecast to `float`" % self.colname raise ValueError(msg) # subset mask = df[self.colname] <= self.thresh if self.colname in ["Combined Score", "NES", "ES", "Odds Ratio"]: mask.loc[:] = True df = df.loc[mask] if len(df) < 1: msg = "Warning: No enrich terms when cutoff = %s" % self.thresh raise ValueError(msg) self.cbar_title = self.colname # clip GSEA lower bounds # if self.colname in ["NOM p-val", "FDR q-val"]: # df[self.colname].clip(1e-5, 1.0, inplace=True) # sorting the dataframe for better visualization if self.colname in ["Adjusted P-value", "P-value", "NOM p-val", "FDR q-val"]: # get top_terms df = df.sort_values(by=self.colname) df[self.colname].replace( 0, method="bfill", inplace=True ) ## asending order, use bfill df = df.assign(p_inv=np.log10(1 / df[self.colname].astype(float))) self.colname = "p_inv" self.cbar_title = r"$\log_{10} \frac{1}{P val}$" # get top terms; sort ascending if (self.x is not None) and (self.x in df.columns): # get top term of each group df = ( df.groupby(self.x) .apply(lambda _x: _x.sort_values(by=self.colname).tail(self.n_terms)) .reset_index(drop=True) ) else: df = df.sort_values(by=self.colname).tail(self.n_terms) # acending # get scatter area ol = df.columns[df.columns.isin(["Overlap", "Tag %"])] temp = ( df[ol].squeeze(axis=1).str.split("/", expand=True).astype(int) ) # axis=1, in case you have only 1 row df = df.assign(Hits_ratio=temp.iloc[:, 0] / temp.iloc[:, 1]) return df def _hierarchical_clustering(self, mat, method, metric) -> List[int]: # mat.shape -> [n_sample, m_features] Y0 = sch.linkage(mat, method=method, metric=metric) Z0 = sch.dendrogram( Y0, orientation="left", # labels=mat.index, no_plot=True, distance_sort="descending", ) idx = Z0["leaves"][::-1] # reverse the order to make the view better return idx def get_x_order( self, method: str = "single", metric: str = "euclidean" ) -> List[str]: """See scipy.cluster.hierarchy.linkage() Perform hierarchical/agglomerative clustering. Return categorical order. """ if isinstance(self.x_order, Iterable): return self.x_order mat = self.data.pivot( index=self.y, columns=self.x, values=self.colname, # [self.colname, "Hits_ratio"], ).fillna(0) idx = self._hierarchical_clustering(mat.T, method, metric) return list(mat.columns[idx]) def get_y_order( self, method: str = "single", metric: str = "euclidean" ) -> List[str]: """See scipy.cluster.hierarchy.linkage() Perform hierarchical/agglomerative clustering. Return categorical order. """ if isinstance(self.y_order, Iterable): return self.y_order mat = self.data.pivot( index=self.y, columns=self.x, values=self.colname, # [self.colname, "Hits_ratio"], ).fillna(0) idx = self._hierarchical_clustering(mat, method, metric) return list(mat.index[idx]) def get_ax(self): """ setup figure axes """ # create fig if hasattr(sys, "ps1") and (self.ofname is None): # working inside python console, show figure fig = plt.figure(figsize=self.figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=self.figsize) _canvas = FigureCanvas(fig) ax = fig.add_subplot(111) self.fig = fig return ax def set_x(self): """ set x-axis's value """ x = self.x xlabel = "" # set xaxis values, so you could get dotplot if (x is not None) and (x in self.data.columns): xlabel = x elif "Combined Score" in self.data.columns: xlabel = "Combined Score" x = xlabel elif "Odds Ratio" in self.data.columns: xlabel = "Odds Ratio" x = xlabel elif "NES" in self.data.columns: xlabel = "NES" x = xlabel else: # revert back to p_inv x = self.colname xlabel = self.cbar_title return x, xlabel def scatter( self, outer_ring: bool = False, ): """ build scatter """ # scatter colormap range # df = df.assign(colmap=self.data[self.colname].round().astype("int")) # make area bigger to better visualization # area = df["Hits_ratio"] * plt.rcParams["lines.linewidth"] * 100 df = self.data.assign( area=( self.data["Hits_ratio"] * self.scale * plt.rcParams["lines.markersize"] ).pow(2) ) colmap = df[self.colname].astype(int) vmin = np.percentile(colmap.min(), 2) vmax = np.percentile(colmap.max(), 98) # vmin = np.percentile(df.colmap.min(), 2) # vmax = np.percentile(df.colmap.max(), 98) ax = self.get_ax() # if self.x is None: x, xlabel = self.set_x() y = self.y # set x, y order xunits = UnitData(self.get_x_order()) if self.x_order else None yunits = UnitData(self.get_y_order()) if self.y_order else None # outer ring if outer_ring: smax = df["area"].max() # TODO: # Matplotlib BUG: when setting edge colors, # there's the center of scatter could not aligned. # Must set backend to TKcario... to fix it # Instead, I just add more dots in the plot to get the ring blk_sc = ax.scatter( x=x, y=y, s=smax * 1.6, edgecolors="none", c="black", data=df, marker=self.marker, xunits=xunits, # set x categorical order yunits=yunits, # set y categorical order zorder=0, ) wht_sc = ax.scatter( x=x, y=y, s=smax * 1.3, edgecolors="none", c="white", data=df, marker=self.marker, xunits=xunits, # set x categorical order yunits=yunits, # set y categorical order zorder=1, ) # data = np.array(rg.get_offsets()) # get data coordinates # inner circle sc = ax.scatter( x=x, y=y, data=df, s="area", edgecolors="none", c=self.colname, cmap=self.cmap, vmin=vmin, vmax=vmax, marker=self.marker, xunits=xunits, # set x categorical order yunits=yunits, # set y categorical order zorder=2, ) ax.set_xlabel(xlabel, fontsize=14, fontweight="bold") ax.xaxis.set_tick_params(labelsize=14) ax.yaxis.set_tick_params(labelsize=16) ax.set_axisbelow(True) # set grid blew other element ax.grid(axis="y", zorder=-1) # zorder=-1.0 ax.margins(x=0.25) # We change the fontsize of minor ticks label # ax.tick_params(axis='y', which='major', labelsize=16) # ax.tick_params(axis='both', which='minor', labelsize=14) # scatter size legend # we use the *func* argument to supply the inverse of the function # used to calculate the sizes from above. The *fmt* ensures to string you want handles, labels = sc.legend_elements( prop="sizes", num=3, # fmt="{x:.2f}", color="gray", func=lambda s: np.sqrt(s) / plt.rcParams["lines.markersize"] / self.scale, ) ax.legend( handles, labels, title="% Genes\nin set", bbox_to_anchor=(1.02, 0.9), loc="upper left", frameon=False, labelspacing=1.0, ) ax.set_title(self.title, fontsize=20, fontweight="bold") self.add_colorbar(sc) return ax def add_colorbar(self, sc): """ :param sc: matplotlib.Scatter """ # colorbar # cax = fig.add_axes([1.0, 0.20, 0.03, 0.22]) cbar = self.fig.colorbar( sc, shrink=0.25, aspect=10, anchor=(0.0, 0.2), # (0.0, 0.2), location="right" # cax=cax, ) # cbar.ax.tick_params(direction='in') cbar.ax.yaxis.set_tick_params( color="white", direction="in", left=True, right=True ) cbar.ax.set_title(self.cbar_title, loc="left", fontweight="bold") for key, spine in cbar.ax.spines.items(): spine.set_visible(False) def barh(self, color=None, group=None, ax=None): """ Barplot """ if ax is None: ax = self.get_ax() x, xlabel = self.set_x() bar = self.data.plot.barh( x=self.y, y=self.colname, alpha=0.75, fontsize=16, ax=ax ) if self.hue in ["Adjusted P-value", "P-value", "FDR q-val", "NOM p-val"]: xlabel = r"$- \log_{10}$ (%s)" % self.hue else: xlabel = self.hue bar.set_xlabel(xlabel, fontsize=16, fontweight="bold") bar.set_ylabel("") bar.set_title(self.title, fontsize=24, fontweight="bold") bar.xaxis.set_major_locator(MaxNLocator(nbins=5, integer=True)) # get default color cycle if (not isinstance(color, str)) and isinstance(color, Iterable): _colors = list(color) else: prop_cycle = plt.rcParams["axes.prop_cycle"] _colors = prop_cycle.by_key()["color"] colors = _colors # remove old legend first bar.legend_.remove() if (group is not None) and (group in self.data.columns): num_grp = self.data[group].value_counts(sort=False) # set colors for each bar (groupby hue) colors = [] legend_elements = [] for i, n in enumerate(num_grp): # cycle _colors if num_grp > len(_colors) c = _colors[i % len(_colors)] colors += [c] * n ele = Line2D( xdata=[0], ydata=[0], marker="o", color="w", label=num_grp.index[i], markerfacecolor=c, markersize=8, ) legend_elements.append(ele) # add custom legend ax.legend( handles=legend_elements, loc="upper left", title=group, bbox_to_anchor=(1.02, 0.5), frameon=False, ) # update color of bars for j, b in enumerate(ax.patches): c = colors[j % len(colors)] b.set_facecolor(c) # self.adjust_spines(ax, spines=["left", "bottom"]) for side in ["right", "top"]: ax.spines[side].set_visible(False) # set ticks ax.tick_params(axis="both", which="both", top=False, right=False) return ax def to_edgelist(self) -> Tuple[pd.DataFrame, pd.DataFrame]: """ return two dataframe of nodes, and edges """ num_nodes = len(self.data) # build graph # G = nx.Graph() group_loc = None if self.x is not None: group_loc = self.data.columns.get_loc(self.x) term_loc = self.data.columns.get_loc(self.y) # "Terms" if "Genes" in self.data.columns: gene_loc = self.data.columns.get_loc("Genes") elif "Lead_genes": gene_loc = self.data.columns.get_loc("Lead_genes") else: raise KeyError("Sorry, could not locate enriched gene list") # build graph # nodes = [] nodes = self.data.reset_index(drop=True) nodes.index.name = "node_idx" genes = self.data.iloc[:, gene_loc].str.split(";") # ns_loc = self.data.columns.get_loc("Hits_ratio") edge_list = [] for i in range(num_nodes): # nodes.append([i, self.data.iloc[i, term_loc], self.data.iloc[i, ns_loc]]) # if group_loc is not None: # nodes[-1].append(self.data.iloc[i, group_loc]) for j in range(i + 1, num_nodes): set_i = set(genes.iloc[i]) set_j = set(genes.iloc[j]) ov = set_i.intersection(set_j) if len(ov) < 1: continue jaccard_coefficient = len(ov) / len(set_i.union(set_j)) overlap_coefficient = len(ov) / min(len(set_i), len(set_j)) edge = [ i, j, self.data.iloc[i, term_loc], self.data.iloc[j, term_loc], jaccard_coefficient, overlap_coefficient, ",".join(ov), ] edge_list.append(edge) # G.add_edge(src, # targ, # jaccard= jaccard_coefficient, # overlap = overlap_coefficient, # genes = list(ov)) edges = pd.DataFrame( edge_list, columns=[ "src_idx", "targ_idx", "src_name", "targ_name", "jaccard_coef", "overlap_coef", "overlap_genes", ], ) # node_c = ["node_idx", "node_name", "node_size"] # if group_loc is not None: # node_c += ["node_group"] # nodes = pd.DataFrame(nodes, columns=node_c) return nodes, edges
[docs]def dotplot( df: pd.DataFrame, column: str = "Adjusted P-value", x: Optional[str] = None, y: str = "Term", x_order: Union[List[str], bool] = False, y_order: Union[List[str], bool] = False, title: str = "", cutoff: float = 0.05, top_term: int = 10, size: float = 5, figsize: Tuple[float, float] = (4, 6), cmap: str = "viridis_r", ofname: Optional[str] = None, xticklabels_rot: Optional[float] = None, yticklabels_rot: Optional[float] = None, marker: str = "o", show_ring: bool = False, **kwargs, ): """Visualize GSEApy Results with categorical scatterplot When multiple datasets exist in the input dataframe, the `x` argument is your friend. :param df: GSEApy DataFrame results. :param column: column name in `df` that map the dot colors. Default: Adjusted P-value. :param x: Categorical variable in `df` that map the x-axis data. Default: None. :param y: Categorical variable in `df` that map the y-axis data. Default: Term. :param x_order: bool, array-like list. Default: False. If True, peformed hierarchical_clustering on X-axis. or input a array-like list of `x` categorical levels. :param x_order: bool, array-like list. Default: False. If True, peformed hierarchical_clustering on Y-axis. or input a array-like list of `y` categorical levels. :param title: Figure title. :param cutoff: Terms with `column` value < cut-off are shown. Work only for ("Adjusted P-value", "P-value", "NOM p-val", "FDR q-val") :param top_term: Number of enriched terms to show. :param size: float, scale the dot size to get proper visualization. :param figsize: tuple, matplotlib figure size. :param cmap: Matplotlib colormap for mapping the `column` semantic. :param ofname: Output file name. If None, don't save figure :param marker: The matplotlib.markers. See https://matplotlib.org/stable/api/markers_api.html :param show_ring bool: Whether to draw outer ring. :return: matplotlib.Axes. return None if given ofname. Only terms with `column` <= `cut-off` are plotted. """ if "group" in kwargs: warnings.warn("group is deprecated; use x instead", DeprecationWarning, 2) return dot = DotPlot( df=df, x=x, y=y, x_order=x_order, y_order=y_order, hue=column, title=title, thresh=cutoff, n_terms=int(top_term), dot_scale=size, figsize=figsize, cmap=cmap, ofname=ofname, marker=marker, ) ax = dot.scatter(outer_ring=show_ring) if xticklabels_rot: for label in ax.get_xticklabels(): label.set_ha("right") label.set_rotation(xticklabels_rot) if yticklabels_rot: for label in ax.get_yticklabels(): label.set_ha("right") label.set_rotation(yticklabels_rot) if ofname is None: return ax dot.fig.savefig(ofname, bbox_inches="tight", dpi=300)
[docs]def ringplot( df: pd.DataFrame, column: str = "Adjusted P-value", x: Optional[str] = None, title: str = "", cutoff: float = 0.05, top_term: int = 10, size: float = 5, figsize: Tuple[float, float] = (4, 6), cmap: str = "viridis_r", ofname: Optional[str] = None, xticklabels_rot: Optional[float] = None, yticklabels_rot: Optional[float] = None, marker="o", show_ring: bool = True, **kwargs, ): """ringplot is deprecated, use dotplot instead :param df: GSEApy DataFrame results. :param x: Group by the variable in `df` that will produce categorical scatterplot. :param column: column name in `df` to map the dot colors. Default: Adjusted P-value :param title: figure title :param cutoff: terms with `column` value < cut-off are shown. Work only for ("Adjusted P-value", "P-value", "NOM p-val", "FDR q-val") :param top_term: number of enriched terms to show. :param size: float, scale the dot size to get proper visualization. :param figsize: tuple, matplotlib figure size. :param cmap: matplotlib colormap for mapping the `column` semantic. :param ofname: output file name. If None, don't save figure :param marker: the matplotlib.markers. See https://matplotlib.org/stable/api/markers_api.html :param show_ring bool: whether to show outer ring. :return: matplotlib.Axes. return None if given ofname. Only terms with `column` <= `cut-off` are plotted. """ warnings.warn("ringplot is deprecated; use dotplot instead", DeprecationWarning, 2) return
[docs]def barplot( df: pd.DataFrame, column: str = "Adjusted P-value", group: Optional[str] = None, title: str = "", cutoff: float = 0.05, top_term: int = 10, figsize: Tuple[float, float] = (4, 6), color: Union[str, List[str]] = "salmon", ofname: Optional[str] = None, **kwargs, ): """Visualize GSEApy Results. When multiple datasets exist in the input dataframe, the `group` argument is your friend. :param df: GSEApy DataFrame results. :param column: column name in `df` to map the x-axis data. Default: Adjusted P-value :param group: group by the variable in `df` that will produce bars with different colors. :param title: figure title. :param cutoff: terms with `column` value < cut-off are shown. Work only for ("Adjusted P-value", "P-value", "NOM p-val", "FDR q-val") :param top_term: number of top enriched terms grouped by `hue` are shown. :param figsize: tuple, matplotlib figsize. :param color: color or list of matplotlib.colors. Must be reconigzed by matplotlib. :param ofname: output file name. If None, don't save figure :return: matplotlib.Axes. return None if given ofname. Only terms with `column` <= `cut-off` are plotted. """ dot = DotPlot( df=df, x=group if group else None, # x turns into hue in bar y="Term", hue=column, # hue turns into x in bar title=title, thresh=cutoff, n_terms=int(top_term), figsize=figsize, cmap="viridis", # placeholder only ofname=ofname, ) if isinstance(color, str): color = [color] ax = dot.barh(color=color, group=group) if ofname is None: return ax dot.fig.savefig(ofname, bbox_inches="tight", dpi=300)
[docs]def traceplot( obj, terms: Optional[Union[str, List[str]]] = None, pheno_pos: str = "", pheno_neg: str = "", figsize: Tuple[float, float] = (6, 4), cmap: str = "seismic", ofname: Optional[str] = None, **kwargs, ): """Trace plot for terms :param obj: GSEA or Prerank Object. :param terms: terms to show in trace plot """ # create bar plot if hasattr(sys, "ps1") and (ofname is None): # working inside python console, show (True) figure fig = plt.figure(figsize=figsize) else: # If working on commandline, don't show figure fig = Figure(figsize=figsize) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) if isinstance(terms, str): _terms = [terms] elif isinstance(terms, list): _terms = terms else: _terms = list(obj.keys()) for t in _terms: if obj.res2d["Name"].nunique() > 1: for name, results in obj.results.items(): if t in results: RES = results[t]["RES"] ax.plot(range(len(RES)), RES, label=name) else: results = obj.results if t in results: RES = results[t]["RES"] ax.plot(range(len(RES)), RES) ax.axhline(0, linewidth=1, linestyle="dashed", color="gray") ax.legend() ax.set_xlabel("Gene list ranking", fontsize=14, fontweight="bold") ax.set_ylabel("Enrichment Score", fontsize=14, fontweight="bold") if ofname is not None: # canvas.print_figure(ofname, bbox_inches='tight', dpi=300) fig.savefig(ofname, bbox_inches="tight", dpi=300) return return ax
[docs]def enrichment_map( df: pd.DataFrame, column: str = "Adjusted P-value", cutoff: float = 0.05, top_term: int = 10, **kwargs, ) -> Tuple[pd.DataFrame, pd.DataFrame]: """Visualize GSEApy Results. Node size corresponds to the percentage of gene overlap in a certain term of interest. Colour of the node corresponds to the significance of the enriched terms. Edge size corresponds to the number of genes that overlap between the two connected nodes. Gray edges correspond to both nodes when it is the only colour edge. When there are two different edge colours, red corresponds to positve nodes and blue corresponds to negative nodes. :param df: GSEApy DataFrame results. :param column: column name in `df` to map the node colors. Default: Adjusted P-value or FDR q-val. choose from ("Adjusted P-value", "P-value", "FDR q-val", "NOM p-val"). :param group: group by the variable in `df` that will produce bars with different colors. :param title: figure title. :param cutoff: nodes with `column` value < cut-off are shown. Work only for ("Adjusted P-value", "P-value", "NOM p-val", "FDR q-val") :param top_term: number of top enriched terms are selected as nodes. :return: tuple of dataframe (nodes, edges) """ # c = column if column not in df.columns: for c in ["Adjusted P-value", "P-value", "FDR q-val", "NOM p-val"]: if c in df: column = c break dot = DotPlot( df=df, x=None, # x turns into hue in colors of nodes y="Term", # node hue=column, # node size thresh=cutoff, n_terms=int(top_term), ) return dot.to_edgelist()